

Recruiting 11 PhD students to be trained as European Experts in Multilevel Bioimaging: Analysis and Modelling of Vertebrate Development and Disease

www.lmageInLife.eu

ImageInLife

Marie Skłodowska-Curie Innovative Training Network funded under the H2020 Excellent Science pillar

www.lmageInLife.eu

ACQUIFER

Grant agreement: 721537
Application deadline: 15 March 2017
Apply on: www.imageinlife-application.eu

The 11 PhD students to be recruited will join the 3 already recruited; they will all participate in the ImageInLife research and training programme. They will all conduct original research projects dedicated to imaging vertebrates at cellular or subcellular levels. Network-wide workshops and transfers between research teams within the network will provide excellent training opportunities and enhance their career prospects

TatraMed Software

Positions available:

University of Montpellier: 1 position to develop new reporters to study early development and macrophage functions in immunity and regeneration.

CNRS, Gif/Yvette: 2 positions to study early steps of development in the zebrafish and rabbit embryos.

University of Cambridge: 1 position available to study early steps of development in the murine embryo.

STUBA, Bratislava: 2 positions to develop new mathematical tools and algorithms to study images and high throughput data from microscopes

Pasteur Institute, Paris: 1 position available to study viral infections in zebrafish larvae

Manchester Metropolitan: 1 position available to develop new strategies to model vertebrate development and diseases

Acquifer, Heidelberg: 1 position available to develop a smart imaging platform for automated high resolution imaging of zebrafish tissues and organs

TatraMed, Bratislava: 1 position available to develop new software solutions for medical image processing and analysis

PhaseView, Paris: 1 position available to study new methods for high speed 3D volume acquisition for in vivo embryo imaging

